CONVERGENCE OF NEW MODIFIED TRIGONOMETRIC SUMS IN THE METRIC SPACE L

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Modified Cosine Sums and L1-convergence of Cosine Trigonometric Series

In this paper we introduce some new modified cosine sums and then using these sums we study L1-convergence of trigonometric cosine series.

متن کامل

New best proximity point results in G-metric space

Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...

متن کامل

New estimates of double trigonometric sums with exponential functions

We establish a new bound for the exponential sum x∈X y∈Y γ(y) exp(2πiaλ xy /p) , where λ is an element of the residue ring modulo a large prime number p, X and Y are arbitrary subsets of the residue ring modulo p − 1 and γ(n) are any complex numbers with |γ(n)| ≤ 1. In particular, we improve several previously known bounds.

متن کامل

Convergence of Program Transformers in the Metric Space of Trees

In recent years increasing consensus has emerged that program transformers, e.g., partial evaluation and unfold/fold transformations, should terminate; a compiler should stop even if it performs fancy optimizations! A number of techniques to ensure termination of program transformers have been invented, but their correctness proofs are sometimes long and involved. We present a framework for pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2008

ISSN: 2008-1901

DOI: 10.22436/jnsa.001.03.06